$\theta / 2 \theta$ scans
Absorption correction: none 4131 measured reflections 3967 independent reflections 2313 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.098$
$S=0.992$
3967 reflections
302 parameters
H atoms constrained $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0501 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$h=-16 \rightarrow 15$
$k=0 \rightarrow 14$
$l=0 \rightarrow 17$
3 standard reflections frequency: 120 min intensity decay: 6.1%
$\Delta \rho_{\text {max }}=0.151 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.153 \mathrm{e}^{\AA^{-3}}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0215 (12)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{O} 1-\mathrm{Cl}$	$1.370(2)$	$\mathrm{N} 21-\mathrm{C} 26$	$1.335(3)$
$\mathrm{O} 3-\mathrm{C} 3$	$1.364(2)$	$\mathrm{N} 31-\mathrm{C} 32$	$1.347(2)$
$\mathrm{O} 5-\mathrm{C} 5$	$1.366(2)$	$\mathrm{N} 31-\mathrm{C} 36$	$1.336(2)$
$\mathrm{N} 11-\mathrm{C} 12$	$1.343(2)$	$\mathrm{N} 41-\mathrm{C} 42$	$1.338(2)$
$\mathrm{N} 11-\mathrm{C} 16$	$1.336(2)$	$\mathrm{N} 41-\mathrm{C} 46$	$1.333(3)$
$\mathrm{N} 21-\mathrm{C} 22$	$1.338(2)$		
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 6$	$121.16(16)$	$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$118.69(17)$
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	$119.06(15)$	$\mathrm{C} 12-\mathrm{N} 11-\mathrm{C} 16$	$117.65(16)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$120.84(16)$	$\mathrm{C} 22-\mathrm{N} 21-\mathrm{C} 26$	$117.06(17)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$118.99(16)$	$\mathrm{C} 32-\mathrm{N} 31-\mathrm{C} 36$	$117.53(16)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$121.23(16)$	$\mathrm{C} 42-\mathrm{N} 41-\mathrm{C} 46$	$117.16(17)$

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$\quad D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1 $\cdots \mathrm{N} 11$	0.82	1.98	$2.776(2)$	164
O3-H3 $\cdots \mathrm{N} 31$	0.82	2.02	$2.834(2)$	175
O5-H5 $\cdots \mathrm{N} 21^{\prime}$	0.82	1.99	$2.785(2)$	162
C44—H44 $\cdots \mathrm{N} 41^{\prime \prime}$	0.93	2.59	$3.492(3)$	163

$$
\text { Symmetry codes: (i) } x, 1+y, z ; \text { (ii) }-x, \frac{1}{2}+y,-\frac{1}{2}-z \text {. }
$$

Compound (I) crystallized in the monoclinic system; space group $P 2_{1} / c$ from the systematic absences. H atoms were treated as riding atoms ($\mathrm{C}-\mathrm{H} 0.93$ and $\mathrm{O}-\mathrm{H} 0.82 \AA$).

Data collection: CAD-4-PC Software (Enraf-Nonius, 1992). Cell refinement: SET4 and CELDIM in CAD-4-PC Software. Data reduction: DATRD2 in NRCVAX96 (Gabe et al., 1989). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a). Program(s) used to refine structure: NRCVAX96 and SHELXL97 (Sheldrick, 1997b). Molecular graphics: NRCVAX96, ORTEPII (Johnson, 1976) and PLATON (Spek, 1998). Software used to prepare material for publication: NRCVAX96, SHELXL97 and WordPerfect macro PRPCIF97 (Ferguson, 1997).

We are indebted to Dr J. F. Gallagher and Dublin City University for funds to purchase the X-ray tube used in the data collection. While no direct support for this work was provided by NSERC Canada, we do acknowledge that organization for partially funding the 1992 upgrade of the CAD-4 diffractometer.

[^0]
References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Braga, D., Grepioni, F., Biradha, K., Pedireddi, V. R. \& Desiraju, G. R. (1995). J. Am. Chem. Soc. 117, 3156-3166.

Chisholm, M. H., Huffman, J. C., Rothwell, I. P., Bradley, P. G., Kress, N. \& Woodruff, W. H. (1981). J. Am. Chem. Soc. 103, 4945-4947.
Coupar, P. I., Ferguson, G. \& Glidewell, C. (1996). Acta Cryst. C52, 2524-2528.
Coupar, P. I., Glidewell, C. \& Ferguson, G. (1997). Acta Cryst. B53, 521-533.
Enraf-Nonius (1992). CAD-4-PC Software. Version 1.1. EnrafNonius, Delft, The Netherlands.
Ferguson, G. (1997). PRPCIF97. A WordPerfect-5.1 Macro to Merge and Polish CIF Format Files from NRCVAX and SHELXL97 Programs. University of Guelph, Canada.
Ferguson, G., Glidewell, C., Gregson, R. M. \& Meehan, P. R. (1998). Acta Cryst. B54, 129-138.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101-109.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Merritt, L. L. \& Schroeder, E. D. (1956). Acta Cryst. 9, 801-804.
Sheldrick, G. M. (1997a). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek, A. L. (1998). PLATON. Molecular Geometry and Graphics Program. Version of April 1998. University of Utrecht, The Netherlands.

Acta Cryst. (1998). C54, 1639-1642

Pairwise-Interlocked Chains in 4,4'-Sulfonyldiphenol-2,2'-Bipyridyl (1/1)

Emma S. Lavender, ${ }^{a}$ Christopher Glidewell ${ }^{a}$ and George Ferguson ${ }^{b}$
${ }^{a}$ School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland, and ${ }^{b}$ Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada NIG 2W1.E-mail: cg@st-andrews.ac.uk
(Received I May 1998; accepted 27 May 1998)

Abstract

In the hydrogen-bonded structure of the title complex, $\mathrm{O}_{2} \mathrm{~S}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}\right)_{2} . \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}$ or $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~S} . \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}$, the bis-phenol molecules are linked into $C(8)$ chains by means of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=\mathrm{S}$ hydrogen bonds, and the $2,2^{\prime}-$ bipyridyl units, which act as single acceptors only, are pendent from these chains by means of $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. Pairs of these chains, related by centres of inversion, are mutually interlocked via their pendent arms.

Comment

The structure of $4,4^{\prime}$-sulfonyldiphenol, $\mathrm{O}_{2} \mathrm{~S}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}\right)_{2}$ (Glidewell \& Ferguson, 1996), consists of $\{4,2,1\}$ interwoven nets (Ferguson et al., 1998) built from square $R_{4}^{4}(32)$ rings (Bernstein et al., 1995) in which the molecules are held together by means of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=\mathrm{S}$ hydrogen bonds. However, in the majority of compounds formed by this bis-phenol with heteroaromatic and other tertiary amines, this $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=\mathrm{S}$ motif is lost, and the predominant mode of intermolecular aggregation is by means of $\mathrm{O}-\mathrm{H} \cdot \cdots \mathrm{N}$ hydrogen bonds (see, for example, Coupar et al., 1997).

In the solid state, crystals of $2,2^{\prime}$-bipyridyl have the molecules lying about inversion centres, with the N atoms on opposite sides of the planar molecule (Merritt \& Schroeder, 1956; Chisholm et al., 1981), so that this bipyridyl is also potentially a double acceptor of hydrogen bonds. We have now investigated the behaviour of $4,4^{\prime}$-sulfonyldiphenol towards $2,2^{\prime}$ bipyridyl and have found that the resulting $1: 1$ adduct, $\mathrm{O}_{2} \mathrm{~S}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}\right)_{2} \cdot \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}$, (I), retains the chain-forming $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=\mathrm{S}$ structural motif of pure $\mathrm{O}_{2} \mathrm{~S}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}\right)_{2}$, with the $2,2^{\prime}$-bipyridyl units all pendent from these chains by means of $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

(I)

The asymmetric unit of (I) consists of one molecule of each component (Fig. 1). The bis-phenol molecules are linked into a single type of $C(8)$ chain by means of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=\mathrm{S}$ hydrogen bonds, with four such chains running through the unit cell parallel to the [100] direction. The hydroxy O 24 atom at (x, y, z) acts as donor to the sulfone O12 atom at ($-1+x, y, z$) (Table 2); the other hydroxy O atom, O14, acts as donor to N31 within the asymmetric unit. Since the $C(8)$ chain is generated by simple translation, all of the pendent $2,2^{\prime}$ bipyridyl units within a given chain lie on the same side of that chain. Although the $2,2^{\prime}$-bipyridyl unit adopts a transoid conformation close to planarity, with a dihedral angle between the two ring planes of only $8.4(1)^{\circ}$, the N41 atom does not act as an acceptor of any hydrogen bonds, hard or soft (Braga et al., 1995).

However, pairs of such chains related by centres of inversion closely imitate the architecture of a zip fastener, with the pendent arms of the two chains mutually interlocked (Fig. 2), and there is evidence of weakly attractive $\pi-\pi$ interactions (Hunter, 1994) between the rings of neighbouring bipyridyl units. The N31-containing ring at (x, y, z) makes an angle of $c a$

Fig. 1. The asymmetric unit of compound (I) showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. A view of part of the crystal structure of (I), showing two interlocked chains. H atoms bonded to carbon have been omitted for clarity.
8.4° with the N 41 -containing ring at ($1-x,-y, 1-z$), and the corresponding ring centroids are ca $3.73 \AA$ apart. Two such pairs of linked chains run through each unit cell.
There are fairly short $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds linking the paired chains (Table 2); atom C12 of the sulfone at (x, y, z) acts as donor to the hydroxy O24 atom at $\left(-1-x, \frac{1}{2}+y, \frac{1}{2}-z\right)$, and repetition of this motif gives a $C(9)$ spiral parallel to [010] around the 2_{1} axis at ($-\frac{1}{2}, y, \frac{1}{4}$), so generating sheets built from
$R_{4}^{4}(24)$ rings. Although this structure contains an excess of hard hydrogen-bond acceptors, the N 41 and O 11 atoms remain unused, participating in no $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ or $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Examination of the structure with PLATON (Spek, 1998) showed that there were no solvent-accessible voids in the crystal lattice.

Experimental

Equimolar quantities of $4,4^{\prime}$-sulfonyldiphenol and $2,2^{\prime}$ bipyridyl were separately dissolved in methanol. The solutions were mixed and the resulting mixture was set aside to crystallize, producing compound (I). Analysis: found C 64.2, H 4.5, $\mathrm{N} 6.8 \%$: $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires $\mathrm{C} 65.0, \mathrm{H} 4.5$, $\mathrm{N} 6.9 \%$. Crystals suitable for single-crystal X-ray diffraction were selected directly from the analytical sample.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~S} . \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \\
& M_{r}=406.44 \\
& \text { Monoclinic } \\
& P 2_{1} / c \\
& a=8.4680(7) \AA \AA^{\circ} \\
& b=11.0388(9) \AA \AA^{\circ} \AA \\
& c=21.7430(17) \AA \\
& \beta=97.897(6)^{\circ} \\
& V=2013.2(3) \AA^{3} \\
& Z=4 \\
& D_{x}=1.341 \mathrm{Mg} \mathrm{~m}^{-3} \\
& D_{m} \text { not measured }
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction:
Gaussian (ABSO in
NRCVAX; Gabe et al., 1989)
$T_{\text {min }}=0.929, T_{\text {max }}=0.963$
3870 measured reflections
3623 independent reflections
Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 25 reflections
$\theta=10.42-16.78^{\circ}$
$\mu=0.192 \mathrm{~mm}^{-1}$
$T=294$ (1) K
Plate
$0.40 \times 0.40 \times 0.21 \mathrm{~mm}$
Colourless

Refinement

Refinement on F^{2}
$(\Delta / \sigma)_{\text {max }}<0.001$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.096$
$S=1.026$
3623 reflections
265 parameters
H atoms constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0461 P)^{2}\right.$ $+0.3671 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

$\mathrm{S} 1-\mathrm{C} 21$	$1.7548(18)$	$\mathrm{N} 41-\mathrm{C} 42$	$1.336(3)$
$\mathrm{O} 14-\mathrm{C} 14$	$1.353(2)$	$\mathrm{N} 41-\mathrm{C} 46$	$1.336(3)$
$\mathrm{O} 11-\mathrm{S} 1-\mathrm{O} 12$	$118.50(9)$	$\mathrm{O} 12-\mathrm{S} 1-\mathrm{C} 21$	$107.50(9)$
$\mathrm{O} 11-\mathrm{S} 1-\mathrm{C} 11$	$107.61(9)$	$\mathrm{C} 11-\mathrm{S} 1-\mathrm{C} 21$	$106.29(8)$
$\mathrm{O} 11-\mathrm{S} 1-\mathrm{C} 21$	$107.86(8)$	$\mathrm{C} 32-\mathrm{N} 31-\mathrm{C} 36$	$118.0(2)$
$\mathrm{O} 12-\mathrm{S} 1-\mathrm{C} 11$	$108.47(9)$	$\mathrm{C} 42-\mathrm{N} 41-\mathrm{C} 46$	$116.9(2)$

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$\quad D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O14-H14 $\cdots \mathrm{N} 31$	0.82	1.93	$2.720(2)$	163
O24-H24 $\mathrm{O}_{1}{ }^{1}$	0.82	1.91	$2.721(2)$	167
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 24^{\prime \prime}$	0.93	2.46	$3.361(2)$	164

Symmetry codes: (i) $x-1, y, z$; (ii) $-1-x, \frac{1}{2}+y, \frac{1}{2}-z$.
Compound (I) crystallized in the monoclinic system; space group $P 2_{1} / c$ from the systematic absences. H atoms were treated as riding atoms ($\mathrm{C}-\mathrm{H} 0.93$ and $\mathrm{O}-\mathrm{H} 0.82 \AA$).
Data collection: CAD-4-PC Software (Enraf-Nonius, 1992). Cell refinement: SET4 and CELDIM in CAD-4-PC Software. Data reduction: DATRD2 in NRCVAX96 (Gabe et al., 1989). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a). Program(s) used to refine structure: NRCVAX96 and SHELXL97 (Sheldrick, 1997b). Molecular graphics: NRCVAX96, ORTEP (Johnson, 1976) and PLATON (Spek, 1998). Software used to prepare material for publication: NRCVAX96, SHELXL97 and WordPerfect macro PRPCIF97 (Ferguson, 1997).

We are indebted to Dr J. F. Gallagher and Dublin City University for funds to purchase the X-ray tube used in the data collection. While no direct.support for this work was provided by NSERC Canada, we do acknowledge that organization for partially funding the 1992 upgrade of the CAD-4 diffractometer.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1207). Services for accessing these data are described at the back of the journal.

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Braga, D., Grepioni, F., Biradha, K., Pedireddi, V. R. \& Desiraju, G. R. (1995). J. Am. Chem. Soc. 117, 3156-3166.

Chisholm, M. H., Huffman, J. C., Rothwell, I. P., Bradley, P. G., Kress, N. \& Woodruff, W. H. (1981). J. Am. Chem. Soc. 103, 4945-4947.
Coupar, P. I., Glidewell, C. \& Ferguson, G. (1997). Acta Cryst. B53, 521-533.
Enraf-Nonius (1992). CAD-4-PC Software. Version 1.1. EnrafNonius, Delft, The Netherlands.
Ferguson, G. (1997). PRPCIF97. A WordPerfect-5.1 Macro to Merge and Polish CIF Format Files from NRCVAX and SHELXL97 Programs. University of Guelph, Canada.
Ferguson, G., Glidewell, C., Gregson, R. M. \& Meehan, P. R. (1998). Acta Cryst. B54, 129-138.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Glidewell, C. \& Ferguson, G. (1996). Acta Cnyst. C52, 2528-2530.
Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101-109.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Merritt, L. L. \& Schroeder, E. D. (1956). Acta Cryst. 9, 801-804.
Sheldrick, G. M. (1997a). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.

$\mathrm{S} 1-\mathrm{O} 11$	$1.4353(14)$	$\mathrm{O} 24-\mathrm{C} 24$	$1.358(2)$
$\mathrm{S} 1-\mathrm{O} 12$	$1.4412(14)$	$\mathrm{N} 31-\mathrm{C} 32$	$1.339(2)$
$\mathrm{S} 1-\mathrm{C} 11$	$1.7567(19)$	$\mathrm{N} 31-\mathrm{C} 36$	$1.337(3)$

Sheldrick, G. M. (1997b). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek, A. L. (1998). PLATON. Molecular Geometry and Graphics Program. Version of April 1998. University of Utrecht, The Netherlands.

Acta Cryst. (1998). C54, 1642-1644

5-Oxo-4-phenyl-1,2,3,4,5,7-hexahydrofuro-[3,4-b]-2(1H)-pyridone \dagger

Julio Duque Rodríguez, ${ }^{a}$ Ramón Pomés Hernández, ${ }^{a}$ Graciela Punte, ${ }^{b}$ Gustavo Hechevarría, ${ }^{b}$ Margarita Suárez Navarro, ${ }^{c}$ Yamila Verdecia Reyes, ${ }^{\text {c }}$ Estael Ochoa Rodríguez ${ }^{c}$ and Beatriz Pita Mieres ${ }^{c}$
${ }^{a}$ X-ray Laboratory, National Center for Scientific Research, PO Box 6990, Havana, Cuba, ${ }^{b}$ PROFIMO, Universidad Nacional de La Plata, La Plata, Argentina, and 'Laboratory of Organic Synthesis, Faculty of Chemistry, Havana University, Havana, Cuba. E-mail: xray@infomed.sld.cu

(Received 16 January 1997; accepted 27 November 1997)

Abstract

The six-membered ring in the title compound, $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{3}$, adopts a twist conformation and the lactone ring a planar conformation. The aryl group occupies a pseudo-axial position and is orthogonal to the plane through the pyridone ring. The molecules are linked by an intermolecular hydrogen bond between the N atom and the carbonyl-O atom of a neighbouring molecule $[\mathrm{N} 1 \cdots \mathrm{O}(x, y-1, z)=2.820(5) \AA$ A .

Comment

Research on the 1,4 -dihydropyridine (1,4 -DHP) system is of current interest because of its properties as a calcium channel antagonist (Bossert \& Vater, 1989). Substitution on the 1,4-DHP ring has been studied (Kuthan \& Kurfurst, 1982) because of the effect of the substituent on the biological properties. It has been found that cyclohexanone and γ-lactone rings fused to the 1,4-DHP moiety result in a striking effect on the entry of calcium ions into the intracellular space (calcium-agonist effect) (Meyer et al., 1976).
The six-membered ring of the title compound, (I), is best described as having a twist conformation; its puckering parameters (Nardelli, 1983a) are $Q=$ $0.422(4) \AA, \theta=120.6(5)^{\circ}$ and $\varphi=-39.9(7)^{\circ}$ with $\Delta C_{2}(\mathrm{~N} 1-\mathrm{C} 7 \mathrm{a})=0.039(2)$ and $\Delta C_{2}(\mathrm{C} 2)=0.098(1)$.

[^1]
(I)

Fig. 1. A perspective view of the molecule with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Crystal structure viewed along the b axis. Hydrogen bonds are represented as dashed lines.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1206). Services for accessing these data are described at the back of the journal.

[^1]: \dagger Alternative name: 4-phenyl-1,2,3,4,5,7-hexahydrofuro[3,4-b]pyrid-ine-2,5-dione.

